Because of a lapse in government funding, the information on this
website may not be up to date, transactions submitted via the
website may not be processed, and the agency may not be able to
respond to inquiries until appropriations are enacted. The NIH
Clinical Center (the research hospital of NIH) is open. For more
details about its operating status, please visit
cc.nih.gov. Updates
regarding government operating status and resumption of normal
operations can be found at
opm.gov.
Trichothiodystrophy Syndromes MeSH Descriptor Data 2026
Autosomal recessive neuroectodermal disorders characterized by brittle sulfur-deficient hair associated with impaired intellect, decreased fertility, and short stature. It may include nail dystrophy, ICHTHYOSIS, and photosensitivity correlated with a NUCLEOTIDE EXCISION REPAIR defect. All individuals with this disorder have a deficiency of cysteine-rich KERATIN-ASSOCIATED PROTEINS found in the interfilamentous matrix. Photosensitive trichothiodystrophy can be caused by mutation in at least 2 separate genes: ERCC2 PROTEIN gene and the related ERCC3. Nonphotosensitive trichothiodystrophy can be caused by mutation in the TTDN1 gene.
Autosomal recessive neuroectodermal disorders characterized by brittle sulfur-deficient hair associated with impaired intellect, decreased fertility, and short stature. It may include nail dystrophy, ICHTHYOSIS, and photosensitivity correlated with a NUCLEOTIDE EXCISION REPAIR defect. All individuals with this disorder have a deficiency of cysteine-rich KERATIN-ASSOCIATED PROTEINS found in the interfilamentous matrix. Photosensitive trichothiodystrophy can be caused by mutation in at least 2 separate genes: ERCC2 PROTEIN gene and the related ERCC3. Nonphotosensitive trichothiodystrophy can be caused by mutation in the TTDN1 gene.